格式:pdf
大?。?span class="single-tag-height">341KB
頁(yè)數(shù): 6頁(yè)
模擬進(jìn)化類算法具有全局尋優(yōu)特性但計(jì)算時(shí)間過(guò)長(zhǎng),而梯度類算法具有很高的局部搜索效率但容易陷入局部最優(yōu)點(diǎn)。基于模擬進(jìn)化類算法和梯度類算法的優(yōu)點(diǎn)提出一種混合優(yōu)化算法,即以蟻群算法起步,經(jīng)過(guò)一定次數(shù)的迭代后切換為梯度算法。提出目標(biāo)值下降準(zhǔn)則和區(qū)間收縮準(zhǔn)則兩種切換算法策略,并且進(jìn)行對(duì)比。針對(duì)電力負(fù)荷參數(shù)辨識(shí),通過(guò)仿真算例和實(shí)際應(yīng)用進(jìn)行測(cè)試。結(jié)果表明,在保證相同精度的前提下混合優(yōu)化算法大大提高了計(jì)算效率。
格式:pdf
大?。?span class="single-tag-height">1.3MB
頁(yè)數(shù): 5頁(yè)
提出了一種基于云模型的電力負(fù)荷預(yù)測(cè)模型.利用云模型中的云發(fā)生器,分別將有限的國(guó)民生產(chǎn)總值和工業(yè)生產(chǎn)總值的增長(zhǎng)率和增長(zhǎng)變化率樣本數(shù)據(jù)空間擴(kuò)充為更具隨機(jī)性和普遍性的擴(kuò)展樣本數(shù)據(jù).以國(guó)民生產(chǎn)總值為例,建立國(guó)民生產(chǎn)總值與電力負(fù)荷之間的規(guī)則推理,構(gòu)造云規(guī)則推理器.利用云規(guī)則推理器獲得電力負(fù)荷預(yù)測(cè)增長(zhǎng)率,將國(guó)民生產(chǎn)總值和工業(yè)生產(chǎn)總值獲得的電力負(fù)荷預(yù)測(cè)增長(zhǎng)率進(jìn)行加權(quán)平均,并換算得到最終的電力負(fù)荷預(yù)測(cè)值,獲得的預(yù)測(cè)結(jié)果精度高.
什么叫電力負(fù)荷知識(shí)來(lái)自于造價(jià)通云知平臺(tái)上百萬(wàn)用戶的經(jīng)驗(yàn)與心得交流。 注冊(cè)登錄 造價(jià)通即可以了解到相關(guān)什么叫電力負(fù)荷最新的精華知識(shí)、熱門知識(shí)、相關(guān)問(wèn)答、行業(yè)資訊及精品資料下載。同時(shí),造價(jià)通還為您提供材價(jià)查詢、測(cè)算、詢價(jià)、云造價(jià)等建設(shè)行業(yè)領(lǐng)域優(yōu)質(zhì)服務(wù)。手機(jī)版訪問(wèn):什么叫電力負(fù)荷