以光子晶體光纖為基質(zhì)的光纖耦合器的設(shè)計(jì)
格式:pdf
大?。?span id="b84pjt2" class="single-tag-height" data-v-09d85783>834KB
頁數(shù):4P
人氣 :84
4.4
設(shè)計(jì)了以光子晶體光纖為基質(zhì)的1 550 nm波段的雙芯光纖耦合器。耦合器雙纖芯間距為4μm,空氣孔孔徑為1μm,孔間距為2μm,一個(gè)周期的耦合區(qū)長度為900μm。數(shù)值計(jì)算了光場在該光纖耦合器中的模場演化情況。數(shù)值計(jì)算結(jié)果表明,以光子晶體光纖為基質(zhì)的光纖耦合器實(shí)現(xiàn)了常規(guī)光纖耦合器的功能。
一種非對稱雙芯光子晶體光纖耦合器
格式:pdf
大?。?span id="yosu4ro" class="single-tag-height" data-v-09d85783>518KB
頁數(shù):5P
通過分析非對稱雙芯光子晶體光纖耦合理論,提出了一種非對稱雙芯光子晶體光纖耦合器。理論分析顯示,該耦合器的耦合比在一個(gè)較寬的波長范圍內(nèi)變化較小,具有波長響應(yīng)平坦特性。通過有限元法模擬分析了該耦合器兩芯間空氣孔的尺寸以及光的偏振對其耦合特性的影響,結(jié)果表明,該非對稱光子晶體光纖耦合器在1.3~1.8μm的波長范圍內(nèi),其50%耦合比變化在±4%以內(nèi),具有較好的波長平坦耦合響應(yīng)特性,適合光纖通信等領(lǐng)域?qū)拵я詈掀鞯男枨蟆?/p>
雙芯光子晶體光纖耦合器模型優(yōu)化研究
格式:pdf
大?。?span id="14367el" class="single-tag-height" data-v-09d85783>414KB
頁數(shù):5P
為了優(yōu)化雙芯光子晶體光纖耦合器的耦合性能,采用改變兩纖芯間空氣孔的結(jié)構(gòu)和孔內(nèi)折射率的方法,得到了雙芯光子晶體光纖耦合器的優(yōu)化模型?;诠馐鴤鞑シ〝?shù)值分析出兩纖芯間空氣孔尺寸以及孔內(nèi)注入材料折射率的變化對雙芯光子晶體光纖耦合器的耦合性能的影響。結(jié)果表明,由于光纖的整體結(jié)構(gòu)不變,使得光纖損耗系數(shù)保持不變;減小雙芯間的空氣孔孔徑或增大孔內(nèi)折射率都會使耦合器的耦合長度減小,兩不同偏振方向的耦合長度差異減小,損耗減小;雙芯間空氣孔內(nèi)折射率可調(diào)性強(qiáng),使得光纖耦合器的耦合性能有易調(diào)節(jié)的優(yōu)點(diǎn),為設(shè)計(jì)雙芯光子晶體光纖耦合器的優(yōu)化模型提供了理論支持。
波分復(fù)用雙芯光子晶體光纖耦合器的設(shè)計(jì)
格式:pdf
大?。?span id="itcbdmw" class="single-tag-height" data-v-09d85783>522KB
頁數(shù):5P
4.5
在雙芯pcf的基礎(chǔ)上設(shè)計(jì)一種新型定向耦合器,根據(jù)波導(dǎo)間相互耦合原理,采用時(shí)域有限差分法分析了該器件的光傳輸特性。并數(shù)值計(jì)算了雙芯pcf的結(jié)構(gòu)參量對耦合性能的影響,發(fā)現(xiàn)其耦合長度隨著空氣填充率d/λ的減小而增大,隨著傳輸波長λ的增大而減小。并基于雙芯pcf結(jié)構(gòu),以常用通信波長為例,設(shè)計(jì)出0.85/1.55μm,0.98/1.55μm和1.3/1.55μm的超微型波分復(fù)用器件,通過調(diào)節(jié)雙芯pcf的結(jié)構(gòu)參量得到合適的耦合長度,實(shí)現(xiàn)了不同波長的解復(fù)用。研究表明雙芯pcf耦合器在波分復(fù)用等方面具有很大的應(yīng)用價(jià)值。
數(shù)值模擬在非對稱雙芯光子晶體光纖耦合器教學(xué)中的應(yīng)用
格式:pdf
大小:433KB
頁數(shù):6P
4.4
本文從對非對稱雙芯光子晶體光纖耦合器的數(shù)值模擬分析,表明提出的結(jié)構(gòu)由于兩不同偏振方向模式的耦合程度相近,使得這種耦合器可忽略光偏振特性的影響;同時(shí),在一定分光比下,耦合器具有波長響應(yīng)平坦性,可制作不同分光比的寬帶雙芯耦合器,并且?guī)?、分光比偏差程度、耦合長度等特性較普通寬帶光纖耦合器都有較大改善,為寬帶非對稱雙芯光子晶體光纖耦合器的制作提供了理論支持。
光子晶體光纖耦合器中的標(biāo)量調(diào)制不穩(wěn)定性
格式:pdf
大小:2.4MB
頁數(shù):8P
4.4
從光纖耦合器的耦合模方程出發(fā),用偶奇超模對其進(jìn)行重寫,討論了當(dāng)輸入條件使奇偶超模其中之一被單獨(dú)激發(fā)時(shí),在光子晶體光纖耦合器中的調(diào)制不穩(wěn)定性.結(jié)果表明:光子晶體光纖耦合器中在正常和反常色散區(qū)均存在調(diào)制不穩(wěn)定性,并且調(diào)制不穩(wěn)定性與三階色散項(xiàng)無關(guān)、與四階色散項(xiàng)有關(guān),給出了增益譜在不同色散區(qū)隨輸入功率的變化關(guān)系;當(dāng)滿足一定條件時(shí),在光子晶體光纖耦合器中傳播的準(zhǔn)連續(xù)波可以分解成脈沖序列,由此可以分離和提取超短脈沖.
光纖耦合器光纖耦合器
格式:pdf
大?。?span id="duawc8x" class="single-tag-height" data-v-09d85783>8KB
頁數(shù):2P
4.7
光纖耦合器光纖耦合器(coupler)又稱分歧器(splitter),是將光訊號從一條光纖中分 至多條光纖中的元件,屬于光被動元件領(lǐng)域,在電信網(wǎng)路、有線電視網(wǎng)路、用戶回路系統(tǒng)、 區(qū)域網(wǎng)路中都會應(yīng)用到,與光纖連接器分列被動元件中使用最大項(xiàng)的(根據(jù)electronicat資 料,兩者市場金額在2003年約達(dá)25億美元)。光纖耦合器可分標(biāo)準(zhǔn)耦合器(雙分支,單位 1×2,亦即將光訊號分成兩個(gè)功率)、星狀/樹狀耦合器、以及波長多工器(wdm,若波 長屬高密度分出,即波長間距窄,則屬于dwdm),制作方式則有燒結(jié)(fuse)、微光學(xué)式 (microoptics)、光波導(dǎo)式(waveguide)三種,而以燒結(jié)式方法生產(chǎn)占多數(shù)(約有90%)。 燒結(jié)方式的制作法,是將兩條光纖并在一起燒融拉伸,使核芯聚合一起,以達(dá)光耦合作用, 而其中最重要的生產(chǎn)設(shè)備是融燒機(jī),也是其中的重
光子晶體光纖及其在光纖陀螺中的應(yīng)用
格式:pdf
大小:1.1MB
頁數(shù):6P
4.7
光子晶體光纖是一種包層由空氣孔-石英沿軸向方向周期排列所構(gòu)成的新型光纖。光子晶體光纖特殊的結(jié)構(gòu)分布和特性,使其在降低光學(xué)噪聲、陀螺尺寸、溫度敏感性,提高陀螺精度和抗核輻射等方面,具有傳統(tǒng)光纖光纖陀螺不可比擬的優(yōu)越性。本文綜述了光子晶體光纖的概念、在光纖陀螺方面的獨(dú)特優(yōu)勢,以及其在光纖陀螺應(yīng)用方面的研究進(jìn)展和前景。
空間激光與單模光纖和光子晶體光纖的耦合效率
格式:pdf
大?。?span id="szpbn9s" class="single-tag-height" data-v-09d85783>263KB
頁數(shù):8P
4.4
為了設(shè)計(jì)最優(yōu)光纖耦合系統(tǒng),利用高斯模場近似單模階躍光纖的模場和大模面積光子晶體光纖的模場,推導(dǎo)出了理想情況下空間激光與這兩種光纖的耦合效率解析表達(dá)式以及光纖端面相對于耦合系統(tǒng)存在橫向偏移和端面傾斜時(shí)的耦合效率解析表達(dá)式?;谏鲜隼碚摫磉_(dá)式計(jì)算了空間激光與光纖的耦合效率,并通過實(shí)驗(yàn)驗(yàn)證了此理論表達(dá)式的有效性。理論計(jì)算和實(shí)驗(yàn)均證實(shí)了單模階躍光纖對于橫向偏移更敏感,當(dāng)橫向偏移量等于單模光纖的纖芯半徑時(shí)所對應(yīng)的耦合效率只有20.25%,為理論最大值的1/4;而大模面積光子晶體光纖對于端面傾斜更加敏感,當(dāng)端面傾斜2°時(shí)對應(yīng)的耦合效率只有40.5%,為理論最大值的1/2。所提出理論表達(dá)式和實(shí)驗(yàn)方法完全可以為設(shè)計(jì)光纖耦合系統(tǒng)提供準(zhǔn)確的參數(shù)。
光子晶體光纖在量子信息上的應(yīng)用
格式:pdf
大?。?span id="7lbizfj" class="single-tag-height" data-v-09d85783>1.1MB
頁數(shù):7P
4.8
先簡單介紹光子晶體光纖相對于普通光纖的特點(diǎn),然后重點(diǎn)闡述光子晶體光纖在量子信息上應(yīng)用的優(yōu)勢。與其它方法,如基于非線性晶體自發(fā)參量下轉(zhuǎn)換方法相比,利用光子晶體光纖能更有效地產(chǎn)生糾纏光子,并能與現(xiàn)有光纖傳輸系統(tǒng)良好兼容,從而表現(xiàn)出其在量子信息領(lǐng)域內(nèi)的優(yōu)越性及巨大的應(yīng)用潛力。最后簡要展望了光子晶體光纖在量子信息領(lǐng)域內(nèi)的前景。
大芯區(qū)的單模光子晶體光纖
格式:pdf
大?。?span id="jwyqfpz" class="single-tag-height" data-v-09d85783>277KB
頁數(shù):4P
4.7
采用毛細(xì)玻璃管拼接并拉絲的方法試制成功光子晶體光纖樣品,它由石英纖芯和周圍呈六角形分布的兩圈氣孔組成,氣孔直徑4μm,間距17μm,芯區(qū)直徑30μm。理論模擬和光學(xué)實(shí)驗(yàn)均證實(shí)此光纖在6328nm以上的波長范圍內(nèi)為單模光纖
光子晶體光纖超連續(xù)譜光源
格式:pdf
大?。?span id="b7p1nyw" class="single-tag-height" data-v-09d85783>700KB
頁數(shù):8P
4.7
介紹該課題組近兩年在光子晶體光纖超連續(xù)譜方面的主要研究成果,包括基于連續(xù)波泵浦研制全光纖化超連續(xù)譜源,利用級聯(lián)一段高非線性正常色散光纖,通過光纖的受激拉曼散射效應(yīng)實(shí)現(xiàn)超連續(xù)譜的平坦化;基于皮秒鎖模光纖激光器實(shí)現(xiàn)全光纖化5w輸出超連續(xù)譜源;拉制一段145m的錐形光子晶體光纖,利用自制的納秒光纖激光器與錐形光子晶體光纖熔接,制備輸出功率2.2w的寬帶超連續(xù)譜源;利用自制的網(wǎng)狀光子晶體光纖和全固態(tài)光子帶隙光纖,分別研究亞微米薄壁上偏振相關(guān)的超連續(xù)譜產(chǎn)生,以及基于四波混頻效應(yīng)產(chǎn)生的超連續(xù)譜.
應(yīng)力型大模面積光子晶體光纖的纖芯設(shè)計(jì)
格式:pdf
大小:719KB
頁數(shù):4P
4.4
通過施加完美匹配層,利用有限元法,研究熱應(yīng)力誘導(dǎo)的單偏振大模面積光子晶體光纖的偏振特性,計(jì)算纖芯參數(shù)對場能量分布系數(shù)和偏振損耗比的影響.結(jié)果表明,隨著纖芯折射率提高,兩正交偏振模的損耗比下降,當(dāng)纖芯直徑減小時(shí),場能量分布系數(shù)降低.
光子晶體光纖熔接損耗研究
格式:pdf
大?。?span id="mbps5tn" class="single-tag-height" data-v-09d85783>511KB
頁數(shù):3P
4.7
基于有限元法分析了光子晶體光纖模場半徑,為了提高計(jì)算速度,提出了一種工作波長為1.55μm時(shí),光子晶體光纖模場半徑的快速估算方法,進(jìn)而實(shí)現(xiàn)光子晶體光纖熔接損耗的快速估算。分析表明,本文提出的方法能夠準(zhǔn)確快速的實(shí)現(xiàn)光子晶體光纖熔接損耗的估算。
光子晶體光纖陀螺技術(shù)
格式:pdf
大小:805KB
頁數(shù):6P
4.6
介紹了光纖陀螺在實(shí)際應(yīng)用過程中的環(huán)境適應(yīng)性問題,并從光子晶體光纖的結(jié)構(gòu)特點(diǎn)出發(fā),總結(jié)了光子晶體光纖的獨(dú)特應(yīng)用優(yōu)勢,指出將光子晶體光纖應(yīng)用于光纖陀螺中可很好地解決溫度、磁和輻射敏感等問題。通過實(shí)驗(yàn)研究,驗(yàn)證了實(shí)心保偏光子晶體光纖的損耗、模式特性,以及溫度、磁場和核輻射對此種光纖的影響。同時(shí),研究開發(fā)了它與傳統(tǒng)保偏光纖的熔接對軸技術(shù),熔接點(diǎn)損耗和偏振串音達(dá)到0.7db和-25db。在此基礎(chǔ)上,研制出光子晶體光纖陀螺樣機(jī),陀螺零漂達(dá)到0.09(°)/h。研究和對比表明:在光纖陀螺中用光子晶體光纖代替?zhèn)鹘y(tǒng)的光纖,在減小溫度、輻射、磁場的影響和進(jìn)一步提高光纖陀螺性能方面具備很大的潛力。
光子晶體光纖的全光纖纖芯變形研究
格式:pdf
大小:668KB
頁數(shù):7P
4.7
利用有限差分光束傳輸法分析了全光纖纖芯變形光子晶體光纖中的模場分布以及能量損耗情況.實(shí)現(xiàn)了光子晶體光纖的選擇性空氣孔塌縮,制作了由小纖芯到大纖芯和圓形芯到矩形芯的纖芯變形光子晶體光纖,該光纖在波長1550nm下以小于0.05db的能量損耗實(shí)現(xiàn)了光斑的整形.實(shí)驗(yàn)結(jié)果與模擬結(jié)果有很好的一致性.
雙層芯色散補(bǔ)償光子晶體光纖
格式:pdf
大?。?span id="p8o78tb" class="single-tag-height" data-v-09d85783>304KB
頁數(shù):5P
4.4
為了抑制通信系統(tǒng)中脈沖的展寬,根據(jù)色散補(bǔ)償理論,提出了一種由單一石英材料制成的雙層芯光子晶體光纖(dccpcf).該光纖的色散值在1.55μm處可達(dá)到-6000ps/(nm·km).理論分析表明,在傳輸過程中內(nèi)芯基模和外芯缺陷模以相位匹配波長為臨界狀態(tài),在內(nèi)芯與外芯之間相互交替?zhèn)鬏?并在匹配波長處因模式發(fā)生強(qiáng)烈耦合而引起折射率產(chǎn)生大幅度波動.通過對結(jié)構(gòu)參數(shù)d1、d2變化的情況下色散曲線的擾動情況進(jìn)行分析,可為實(shí)際制備工作提供一定的理論指導(dǎo).
混合纖芯光子晶體光纖的色散特性研究
格式:pdf
大小:820KB
頁數(shù):5P
4.7
利用有限差分法研究了一種混合纖芯光子晶體光纖的色散特性.在光纖端面的外圍區(qū)域,由空氣孔在石英材料中均布排列形成包層,在中心則由圓形高折射率材料與布居其近鄰的數(shù)個(gè)輔助小空氣孔共同構(gòu)成纖芯.輔助空氣小孔使光纖的色散陡增,比普通光纖色散參數(shù)高兩個(gè)數(shù)量級以上.詳細(xì)的數(shù)值研究表明,纖芯周圍的一圈輔助空氣小孔數(shù)目越多、越靠近圓形高折射率材料則色散參數(shù)就越大.當(dāng)輔助小孔距離纖芯非常近時(shí),模場面積大幅度增大,此時(shí)不僅能獲得超大色散,而且能夠使光子晶體光纖具有非常小的非線性效應(yīng).改變包層空氣孔的大小對色散參數(shù)影響不明顯.
(完整word版)光纖耦合器光纖耦合器
格式:pdf
大?。?span id="0kyaurn" class="single-tag-height" data-v-09d85783>8KB
頁數(shù):2P
4.7
光纖耦合器光纖耦合器(coupler)又稱分歧器(splitter),是將光訊號從一條光纖中分 至多條光纖中的元件,屬于光被動元件領(lǐng)域,在電信網(wǎng)路、有線電視網(wǎng)路、用戶回路系統(tǒng)、 區(qū)域網(wǎng)路中都會應(yīng)用到,與光纖連接器分列被動元件中使用最大項(xiàng)的(根據(jù)electronicat資 料,兩者市場金額在2003年約達(dá)25億美元)。光纖耦合器可分標(biāo)準(zhǔn)耦合器(雙分支,單位 1×2,亦即將光訊號分成兩個(gè)功率)、星狀/樹狀耦合器、以及波長多工器(wdm,若波 長屬高密度分出,即波長間距窄,則屬于dwdm),制作方式則有燒結(jié)(fuse)、微光學(xué)式 (microoptics)、光波導(dǎo)式(waveguide)三種,而以燒結(jié)式方法生產(chǎn)占多數(shù)(約有90%)。 燒結(jié)方式的制作法,是將兩條光纖并在一起燒融拉伸,使核芯聚合一起,以達(dá)光耦合作用, 而其中最重要的生產(chǎn)設(shè)備是融燒機(jī),也是其中的重
雙芯準(zhǔn)晶格光子晶體光纖的色散特性
格式:pdf
大小:480KB
頁數(shù):7P
4.7
雙芯準(zhǔn)晶格光子晶體光纖的色散特性 胥長微 (黑龍江大學(xué)電子工程學(xué)院20115414) 摘要:設(shè)計(jì)了一種折射率引導(dǎo)型雙芯準(zhǔn)晶格光子晶體光纖。該光纖內(nèi)、外纖芯中光波的耦合 效應(yīng),可在相位匹配波長附近產(chǎn)生相當(dāng)高的負(fù)色數(shù)值。通過分析內(nèi)包層孔徑、纖芯孔徑、外 包層孔徑d,孔間距a,最終設(shè)計(jì)出一種能在1550nm低損耗窗口性能優(yōu)越的色散補(bǔ)償光纖。 此種光線適合在長距離高速光纖通信,系統(tǒng)中為常規(guī)單模光纖提供色散補(bǔ)償。 關(guān)鍵詞:光纖光學(xué);光子晶體光纖;雙芯;色散補(bǔ)償 1引言 近年來,光子晶體光纖由于其獨(dú)特的特性們的廣泛關(guān)注,并成為國際學(xué)術(shù)界 研究的熱點(diǎn)領(lǐng)域.由于靈活的結(jié)構(gòu)使得它具有許多傳統(tǒng)光纖不具備的特點(diǎn),比 如高非線性,高雙折和偏振保持,奇異色散特性,表面增強(qiáng)拉曼效應(yīng)等.雙芯光 纖是學(xué)系統(tǒng)中常用的耦合器件,然而傳統(tǒng)雙芯光纖在制作上比繁瑣,光子晶體 光
光子晶體光纖熔接機(jī)理的研究
格式:pdf
大?。?span id="suhtgf0" class="single-tag-height" data-v-09d85783>713KB
頁數(shù):5P
4.6
光子晶體光纖(pcf,photoniccrystalfiber)的熔接技術(shù)為pcf產(chǎn)品的應(yīng)用和開發(fā)提供了條件。本文主要介紹了影響pcf熔接的主要因素,比較了傳統(tǒng)電弧熔接方法和激光熔接方法的優(yōu)缺點(diǎn),闡述了激光熔接的基本原理和工作流程,為pcf激光熔接機(jī)的制作打下基礎(chǔ)。
多芯光子晶體光纖高功率超連續(xù)譜光源
格式:pdf
大?。?span id="cwdynnk" class="single-tag-height" data-v-09d85783>195KB
頁數(shù):2P
4.3
分析基于單芯光子晶體光纖的超連續(xù)譜光源在提升平均輸出功率時(shí)所面臨的問題,指出采用多芯光子晶體光纖作為超連續(xù)譜產(chǎn)生介質(zhì)是一種實(shí)現(xiàn)高功率超連續(xù)譜產(chǎn)生的潛在方案。使用自制皮秒光纖激光器泵浦一段國產(chǎn)多芯光子晶體光纖,實(shí)現(xiàn)了光譜范圍750~1700nm,平均功率42.3w的全光纖化高功率超連續(xù)譜輸出。
文輯推薦
知識推薦
百科推薦
職位:一級結(jié)構(gòu)工程師
擅長專業(yè):土建 安裝 裝飾 市政 園林